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It  is no ted  tha t  the diffusion Langev in  s tochas t ic  sources  in chemica l  

reac t ion-di f fus ion  theor ies  should  real ly  arise f rom a s tochas t ic  source te rm 
added  to the de te rmin is t i c  form of  F ick ' s  law. This  gives rise to results  for 

cor re la t ion  funct ions  which  agree with those f rom s tochas t ic  mas te r  

equa t ions  p rov ided  pa rame te r s  are app ropr i a t e ly  chosen.  

KEY W O R D S :  Stochastic equations; Langevin equations; chemical 
reactions ; diffusion theory ; master equations ; fluctuations. 

Recently, chemical fluctuations have been studied from various points of  
view. It has been usual to write chemical Langevin equations for concentra- 
tions in the form 

~b~t - D~V2~b' + ~ ~ + g,(x, t) (1) 

where g~(x, t) is a stochastic source 2 and (~@i/~t)10hom is a certain function of  
the chemical concentrations, which describes the chemical process under 
consideration. 

The statistics of  the stochastic source term must be specified by fixing 
the correlation functions of  the stochastic sources. These are often fixed in a 
rather arbitrary manner. For example, Nitzan e t  al .  ~1~ use 

(g~(xl, tl)gj(x2, t2)) = K~i 3(xl - x2) 3(h - t2) (2) 

where K~j is a constant matrix. This form is taken over from that used in the 
theory of Brownian motion (see, e.g., Ref. 2), where the stochastic source 
term is indeed a real force, i.e., the fluctuating part  of the time derivative of  
the momentum of a Brownian particle. 

1 D e p a r t m e n t  of  Physics,  Univers i ty  of  W a i k a t o ,  H a m i l t o n ,  New Zea land .  
Some au thors  use the t e rm " L a n g e v i n  force."  Since g~(x, t) is d imens iona l ly  not  a 

force, we shall  eschew this  dangerous  te rminology .  
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In specifying the statistics of the chemical stochastic source, one should be 
careful to take account of the nature of the chemical and diffusion processes. 

If one considers the case of pure diffusion, with no chemical reaction, 
then Eq. (1) can be derived from Fick's law and conservation of chemical 
species. 

Considering now the case of only one chemical species, there exists a 
current j such that Fick's law takes the form 

j = - D  V~b + fa(x, t) (3) 

where fa(x, t) is a stochastic source, which is a vector function, and takes 
account of the fact that diffusion is a noisy process. However, the conserva- 
tion law 

V.j + (8~18t) = 0 (4) 

is by definition exact,  and does not need stochastic sources. It says simply 
that, in any small volume, the net number of molecules crossing the boundary 
gives the net increase in the number of molecules inside the boundary. 

Combining (3) and (4) gives an equation like (1), (without a chemical 
term), with 

g(x, t) = -- V.fa(x, t) (5) 

The appropriate correlation function for fa(x, t) is 

(fa.i(xl,  t l) fa,j(x2,  t2)) --- Ka(x l ,  tl) 8,j 8(xl - x2) 3(tl - t2) (6) 

which says that, at the same point, different components of j are uncorrelated, 
which is an assumption, but one which seems very reasonable from the 
definition (3) of j. Thus (6) and (5) now yield 

(g (x l ,  q)g(x2, t2)) = 3 2 Vz .  V2(Ka(x l ,  tl) 3(xl - x2)) 3(q - t2) (7) 

which is quite a different result from (2). 
In the case that there is a chemical reaction as well, a noise term should 

be added for the chemical part of the process by modifying the conservation 
law: thus, 

84, 8r I --at + V.j = N ~ + f~(x, t) (8) 

In this case we take the chemical stochastic sourcefc(x, t) to have a correlation 
function 

(f~(x~, tl)fo(x2, t2)) = K~(xl, t~) ~(xl - x2) ~(tl - t2) (9) 

and we get 

g(x, t) = f~(x, t) - D V.fa(x, t) (10) 
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Assuming that chemical and diffusion sources are uncorrelated, we get 

(g(x l ,  tl)g(x2, t2)) 

= {Kc(xl, tl) 3(xl - x2) + D 2 VI" Ve[Ka(xl, tl) 3(xl - x2)]} 3(tl - t2) 
(11) 

As an example, let us consider the simple reaction given by 

(og,/at)l~o~ = a - ~b (12) 

which corresponds to the reaction 

A ~ X (13) 

with A held fixed, and $ representing the concentration of X. We do not have 
explicit apriori knowledge of K~(x, t) and Ka(x, t), but expect them to depend 
on x and t only implicitly, through (for example) (~b(x, t)). Thus, in a steady- 
state situation, Kc(x, t) and Ka(x, t) would be constant. One can calculate 
the steady-state two-time correlation function 

f#(xl - x2, tx - t2) - lim {(~b(xl, tl)~b(x2, t2)) - ( r  tl))(~b(x2, t2))} 

t 2 .-.* 

= ~ daq {exp[iq.(x~ - x2)]} K~2(Dq 2+ D2q2Ke+ a) 

x e x p [ - ( D q  2 + A)lt~ - t211 (14) 

Taking tl = t2, we find that if 

ADKa = Kc (15) 

then 

if(x, 0) = (Kc/2;~) 8(x) (16) 

which corresponds to uncorrelated fluctuations at different spatial points at 
the same time. This is the result one obtains from the use of master equations (3) 
to describe chemical reactions. 

Any other choice gives a correlation function with correlation length 

/c = (D/A) ~/2 (17) 

as does the choice of statistics for g(x, t) of Eq. (2). The Langevin approach is 
unable to give any other information about K~(x, t) and Ka(x, t) except 
possibly at equilibrium if statistical mechanical techniques like those used by 
Einstein <~> for Brownian motion are used. 

Van Kampen <5~ has recently shown that the use of a stochastic master 
equation approach, similar to those used in Ref. 3, yields definite predictions 
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for the Langevin forces. By following this method for the reaction (12), one 
finds an equation of the form (11) does indeed hold, with 

Ka(x, t) = 2<~b(x, t ) ) /D ,  Ko(x, t) = h<~b(x, t ))  + a (18) 

so that Eq. (15), though it looks quite arbitrary from a Langevin equation 
approach, is indeed satisfied in the steady state. Thus, as pointed out in 
Ref. 3, an equilibrium result of uncorrelated fluctuations at the same time, 
but different points, is predicted by master equation methods. Furthermore, 
the result (18) predicts that the variance of ~b is Poissonian, namely if 

then 

r =J2v d3x~(x) (19) 

(r 2) - @[AV]) 2 = (~b[AV]) (20) 

Only if one postulates that the fluctuations are Poissonian and uncorre- 
lated are Ka and Kc in the steady state predicted. Such a postulate cannot, 
however, in general be made (e.g., see Ref. 3), so that the Langevin equation 
approach must remain an incomplete theory, unless supplemented by 
further assumptions, such as the stochastic master equation description 
adopted by Gardiner et al. ~3~ and van Kampen. (5~ 
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NOTE A D D E D  IN PROOF 

Grossmann (6~ has recently given a very thorough treatment of the prob- 
lem discussed here, for fluctuations in chemically reacting and hydrodynamic 
systems. 
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